倒数的认识教学设计15篇(精华)
倒数的认识教学设计15篇(精华)
作为一无名无私奉献的教育工作者,通常需要准备好一份教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么大家知道规范的教学设计是怎么写的吗?下面是小编收集整理的倒数的认识教学设计,仅供参考,大家一起来看看吧。
倒数的认识教学设计1
教材分析:
这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。
设计理念:
本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程,培养学生的数学应用意识和激发学习热情,培养学生观察、归纳、推理和概括的能力。
教学目标:
认知目标:使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
能力目标:培养学生观察、归纳、猜想、推理和概括的能力。
情感目标:提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。
教学重点:
使学生通过探究活动,认识倒数的`意义,掌握找倒数的方法。
教学难点:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
教学过程:
一、 创设活动情景,引入概念
师:我们刚刚学习了分数的乘法,老师想考考大家掌握的怎么样,能不能经受住老师的考验?
生(众):能!
师:好!(出示投影)请把下面的几个题目算一算,同位相互交换一下答案。
题目:3/8x8/3 7/15x15/7 5x1/5 1/12x12
生:进行计算。(完成后小组进行交流,学生汇报其发现的结论)
(通过计算,学生可能发现每组算式的乘积都是1,通过观察发现相乘的两个分数的分子和分母位置是颠倒的)
师:同学们发现了每组算式的两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做倒数。
出示倒数的意义:乘积是1的两个数互为倒数。
二、 探索研究,深入理解
师:同学们能不能说说你对倒数的意义的理解?
提示:“互为”是什么意思?
生:指的是倒数表示两个数之间的关系,这两个数缺一不可,互相依存,单独的一个数不能叫倒数。
师:回答的很好,下面同学们来判断一下我说的话有没有错误:因为3/4x4/3=1,所以3/4是倒数,4/3也是倒数。
生:(争先恐后地)不对!
师:那我该怎么说呢?
生:3/4和4/3互为倒数。
师:还有其他的说法吗?
生:3/4是4/3的倒数,4/3是3/4的倒数。
师:好,大家说的都不错,那么我给你一个数你能找出它的倒数吗?
生:能!
师:好!我我来考考大家!
三、 运用概念,探讨方法
师:(投影,出示例2)
3/5 6 7/2 5/3 1/6 1 2/7 0
找一找,下面的哪两个数互为倒数?
(小组探讨交流,并说说是怎样找的?汇报交流结果。)
生:有两种方法来找一个数的倒数:
1、看看两个分数的乘积是不是1;
2、看两个分数的分子与分母是否分别颠倒了位置。
师:(征求意见)大家同意他的说法吗?
生:同意!
师:大家认为哪一种方法更快呢?
生:第二种。
师:好,那咱们就用第二种来求一个数的倒数。(板演方法,强化学生的理解。)
四、 出示特例,深入理解
师:同学们再观察一下刚才我们做的题目,还有没有没找到倒数的数据?
生:有!1和0。
师:(提问)那1和0有没有倒数呢?如果有,是多少?
小组讨论、汇报。
1、 关于1的倒数。
因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
2、 关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
五、 巩固练习
(用多媒体投影出示下列各题,学生先做,再全班交流)
1、 写出下列各数的倒数。
4/11 16/9 35 7/8 4/15
2、 下面说法对不对?为什么?
(1)7/12与12/7的乘积为1,所以7/12与12/7互为倒数。
(2)1/2x4/3x3/2=1,所以1/2、4/3、3/2互为倒数。
(3)0的倒数还是0。
(4)一个数的倒数一定比这个数校
六、归纳小结,交流共享
师:本节课你学到了什么,你有什么体会?
生:我认识了什么叫倒数,还学会了怎样求倒数。
七、布置作业:练习7第7题。
倒数的认识教学设计2
教学目标
1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。
2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。
3.培养学生的观察能力和概括能力。
教学重点和难点
1.正确理解倒数的意义及互为的含义。
2.正确地求出一个数的倒数。
教学过程设计
(一)激发兴趣,引出概念
1.投影。哪个同学和老师比赛?谁说得快?
师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)
2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。
板书:乘积是1 两个数
3.你还能很快说出乘积是1的.两个数吗?你为什么说得这么快,有什么窍门吗?
生:两个数分子、分母颠倒位置就可以了。
师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)
4.举例说明,什么叫互为倒数?
师:3是倒数这句话对吗?为什么?
你们说得对,谁能说出几组倒数?
同桌互相说,每人说两组。(指名说)
问:怎样判断他们说得是否正确?
生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于
倒数的认识教学设计3
教学内容:教科书第24页例1、例2及“做一做”。
教学目标:
1.使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
2.培养学生观察、归纳、推理和概括的能力。
教学过程
一、口算练习,唤醒对1的探究热情
A①×=②×=③×32=④×=
⑤×=⑥62×=⑦×=⑧×=
⑨×=⑩×=
B①×1=②×1=③×1=④×1=
⑤×1=⑥1×=⑦1×=⑧1×=
⑨1×=⑩1×=
C①÷1=②÷1=③÷1=④÷1=
⑤÷1=⑥÷1=⑦÷1⑧÷1=
⑨÷1=⑩÷1=
(课前,将三组口算练习题分别发给同桌两人,其中把A发给坐在右边的学生,把B、C发给坐在左边的学生))
师:请同学们拿出课前发的口算练习卡,现在我们来进行一个口算比赛,做完后请起立,两分钟时间,现在计时开始。
之后让学生思考为什么做两组的比做一组的还快呀?学生交流后,再屏幕出示口算题让学生找找原因。
师:看来秘诀就在1这个数上。1在运算中有一些特点,任何数乘1还得原数,如果除以1,也是这样。所以这个1,在数学运算中有自己独特的地方。板书:1想一想,谁除以谁会等于1呢?能用最简洁的语言概括一下吗?
二、观察比较,抽象概念
提问:谁乘谁等于1呢?板书:×()=1
在练习本上写几组乘积是1的算式,时间1分钟,看看谁写得多。
交流:把学生的算式分类排列。(整数、分数、小数)
小结:3个臭皮匠赛过诸葛亮,集中大家的智慧,让我们把问题考虑的更全面。
观察:这些等于1的乘法算式,因数有什么特点?
预设:
1、在有分数的算式里,分母和分子都颠倒了。(他用了一个词颠倒,很好的概括了这些因数的特点。这样的两个分数相乘都等于1吗?能不能再举出一些例子来?)真的很有意思,分子分母颠倒过来的两个数相乘等于1.在数学上,知道这样的两个数叫什么吗?(板书:倒数)
2、很形象,分子分母交换了位置,通俗的讲就是倒过来了。那现在谁能简练的概括一下,什么是倒数?(板书:乘积是1的两个数互为倒数。)
理解:
在倒数的意义中,你觉得哪些词比较重要?为什么?
预设:
①乘积是1,强调了只能是乘法计算的结果,加法、减法、除法的结果是1的两个数就不能说是互为倒数。
②两个数也很重要,它告诉我们不能是3个、4个或更多个数的乘积,只能是两个数的乘积是1.
③互为也很重要,互为是互相的意思,表示两个数之间的一种关系,一个数不能叫倒数。
练习:
现在我们通过几道小练习来检测一下大家是否弄清了倒数的意义。
1、×()=1
2、判断:
①因为×=1,所以是倒数,也是倒数。()
②××=1,所以、、互为倒数。()
③×的乘积为1,所以与互为倒数。()
三、运用概念,探究方法
提出问题:
我们理解了什么是倒数,那给一个数,你会找它的`倒数吗?同桌两个人互相出数,然后想一想,怎样求这些数的倒数?
全班交流:
①分数(多找几对同桌先交流结果,再说一说找分数倒数的方法)
②整数(化成分母是1的分数,然后交换分子和分母的位置或用1除以这个数)有研究1的倒数的吗?0呢?
③小数(先化成分数,然后交换分子和分母的位置)
质疑:
有研究带分数的吗?带分数怎样找倒数呢?(举例验证,总结方法。)
四、分层练习,形成能力
1、写出下面各数的倒数。(课本24页做一做)
预设:学生可能会出现=
2、若m×=1,则m=()。
3、任何真分数的倒数都是()。
A真分数B假分数C不确定的数
4、游戏:找朋友。
①请4个同学到台上,给每人戴上一顶帽子,上面有、、0.5、2各数,本人看不到自己头上的数,但可以看到其他三个人的。
②5个不同的数:、、1、、3,每个数的倒数都在其中。
五、回顾全课,总结提升
今天这节课,你有什么收获?
师:同学们在动脑思考、合作交流中知道了什么是倒数,并知道了求一个数倒数的方法,还发现了两个特殊的数:1的倒数是1,0没有倒数。希望同学们在学习中能坚持善于观察、勤于动脑的好习惯,探索更多的数学知识。
倒数的认识教学设计4
教学内容:
教科书第50页例7及相应的练习
教学目标:
1、使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。
2、培养学生举例、观察、比较、抽象概括能力。
3、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。
一、口算导入
分别出示一四组算式(加减乘除),指名报答案,找这一组算式的共同点(和是1,差是1,积是1,商是1);
师:今天,我们就一起来研究乘积是1的这一类算式。同学们,你能自己写一些乘积是1的算式吗?老师给你30秒时间,看看哪位同学写得既对又多。
展示个别学生作品,大家写的算式都有一个共同点:(乘积是1)。(板书)
师:乘积是1的两个数到底存在什么样的关系呢?请大家把书翻到第50页,自学。
指名回答,(乘积是1的'两个数互为倒数。)(板书)相机揭示课题(认识倒数)(板书)
二、教学新课
师:你认为在这一句话中有哪些词比较关键?师划出,逐一解读。先强调乘积及1。
(1)问:“互为”是什么意思?(互相)
一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。
(2)(结合学生的算式:)比如()乘()等于1,所以()和()互为倒数,也可以说(A)是(B)的倒数或者(B)是(A)的倒数。
(3)观察互为倒数的两个数,看看它们的分子、分母有什么特点?指名回答。
(4)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说()是倒数吗?对啊,倒数相互依存的,这种存在相互依存关系的数,我们在五年级时就学习过,大家还记得吗?(倍数、因数)
(5)选择一个算式,跟你的同桌说说谁是谁的倒数。
三、求一个数的倒数
1、刚才,你们在短时间内写出了很多乘积是1的算式,在设计这些乘法算式时有什么窍门吗?指名回答(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)
为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)
讨论到这里,你知道怎样求一个数的倒数了吗?指名回答。大家同意吗?
好的,接下来,老师要来考考大家了,有信心吗?我报一个数,你们一起说出这个树的倒数,5/9的倒数是9/5,7/6,6/10,11/8,3/7
2、师:同学们已经学会了求真分数、假分数的倒数,想一想,我们还学过哪些数?(整数、小数、带分数)那么,怎样求整数、小数、带分数的倒数呢?列出几个数:
自主探究
a四人为一小组,选择一种情况研究
b生交流汇报,师板书例子
c引导概括求倒数的方法
3、同学们真棒,通过自己的探索,学会了求一个数的倒数。那么有没有同学知道1的倒数呢?为什么?(1可以看成1/1,所以倒数仍是1,或者1×1=1)(板书)
那0的倒数呢?为什么?指名回答(0乘任何数都得0,即0乘任何数都不可能等于1。)(板书)
4、归纳如何求一个数的倒数
求一个数的倒数(0除外),只要把它的分子、分母交换位置。
5、师:学了那么多,下面就让我们一起来练一练吧(书本50页,练一练)
展示,核对,强调互为倒数的两个数之间不能用“=”连接。
倒数的认识教学设计5
设计说明
“倒数的认识”是在学生学习了分数乘法的基础上进行教学的,它既是分数乘法计算的后继内容,又是学习分数除法的基础,起着承上启下的作用。这部分知识主要 包含两部分内容:一是倒数的意义;二是求一个数的倒数的方法。基于以上的教学作用和内容,本节课的教学设计如下:
1.游戏激趣,迁移揭题。上课伊始,通过 反义词知识,帮助学生理解“互为”的意义,为构建新知扫清语言理解上的障碍,然后通过知识迁移,自然地导入倒数知识的学习。
2.发现、讨论、探究新知。教 师以组织者、引导者、合作者的身份,让学生主动参与到整个学习的过程中,为学生提供发现、讨论的机会。先让学生观察乘积是1的算式,引出倒数的意义,再根 据倒数的意义求一个数的倒数。
学习目标
1.使学生理解倒数的意义,掌握求一个数的倒数的方法。
2.培养学生观察、归纳、推理和概括的能力。 3.培养学生严谨好学的学习态度。
学习重点
理解倒数的意义。
学习难点
掌握求倒数的方法。
教学过程
一、激趣导入。(7分钟)
引导学生理解“互为”的意义。根据每组字的`规律填数。3.导入新课,板书课题。
仔细观察每组分数的分子和分母,它们之间有哪些关系?这节课我们就根据这样的位置关系来学习新知识——倒数的认识。
二、探究交流解决问题。(20分钟)
1.明确倒数的意义。
先计算,再观察,看看有什么规律。
(1)引导学生认真计算并思考,发现规律。
(2)交流发现的问题。
(3)教师说明这样的两个数就互为倒数,并引导学生总结这几组算式的共同特点,尝试描述倒数。
(4)明确倒数的意义。(板书)
(5)指名举例说出什么是倒数。
2.探究求倒数的方法。
课件出示教材28页例1。
(1)学生独立解答。
(2)指导学生分小组讨论:怎样才能快速地找到一个数的倒数?
(3)组织学生讨论:1的倒数是多少?0有倒数吗?
(4)师生共同总结求倒数的方法。
三、巩固练习,应用反馈。(10分钟)
1.写出下面各数的倒数。
2.游戏:互说倒数。
组织学生进行分组游戏,两人一组,一名学生说出一个数,另外一名学生快速说出它的倒数。
四、课堂总结。(4分钟)
1.教师总结本节课的学习内容。
2.布置课后学习内容。
倒数的认识教学设计6
教学目标:
1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。 2、培养学生的数学思维。
教学重点:理解倒数的意义,求一个数的倒数。
教学难点:
从本质上理解倒数的意义。
教学过程:
一、呈现数据,先计算,再观察发现。
1、出示:3/8×8/3 7/15×15/7 5×1/5 0.25×4 2、
计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)
二、交流思辨,抽象概念。
1、汇报。乘积都是1。
2、你能根据上面的观察写出乘积是1的另一个数吗?
3/4×( )=1 ( )×9/7=1
说说你是怎样写得,有什么窍门?
你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数) 你是怎样想的?
如0.5、1.7 3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。
4、让学生说说上面的数(用两种说法)。
5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。
学生讨论:分数的分子分母调了一下位置;
师:那么5×1/5 0.2×5乘积也是1哟!怎么?把整数和小数也化成分数。
6、沟通:分子分母倒一下跟乘积是1有联系吗?
7、现在你对倒数有了怎样的认识?
三、求一个数的倒数。
1、找一个数的倒数。
5/11的倒数是( ),( )的.倒数是4/7,( )和15是互为倒数。
你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)
2、会找了吗?你能找到下列数的倒数吗?
3/5 4/9 6 7/2 1 1.25 1.2 0
学生独立完成,然后交流。
《倒数的认识》的教学反思:
《倒数的认识》这一节课内容很简单,它是在分数乘法计算的基础上进行教学的,它主要为分数除法做准备。本节课主要让学生理解倒数的意义,掌握求一个数的倒数的方法。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。这节课我设计的两个游戏贯穿了新授内容的始终。课的一开始我是让学生听音乐,找朋友,通过找朋友的游戏理解“什么是互为好朋友”?从而真正理解“互为”的含义,为以后学习倒数的意义打下基础。接着我又设计“猜字”来引出倒数?如:我说“吴”“杏”字上下颠倒,变成什么字?那数学是不是与有这样的特征呢?使学生在做猜字的同时理解倒数的意义,同时也增加了数学学习的趣味性。不足之处:由于本课我为了增强学生学习的趣味性,设计的游戏环节花费时间过长。但让学生亲历学习过程,势必要花去大量的时间,这样练习应用的时间就相对减少,以至于在求带分数、小数的倒数时练习的少,因此,合理安排授课时间还是应当讲究。
倒数的认识教学设计7
教材分析
倒数是北师大版五年级数学下册的内容,这部分内容实在分数乘法计算的基础上进行教学的,通过观察乘积是1的几组数的特点,引导学生认识到数,为后面学习分数除法做准备,它是分数计算的关键,他沟通了分数乘法和除法的计算,骑着承前启后的作用。
学情分析
倒数这一节内容对学生来说非常陌生,以前从没有接触过,但是这节内容,对于五年级的学生来说非常简单,以为经过四年的学习,他们已经具备了分析问题和解决问题的能力,会很容易学会的。
教学目标:
1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
2、进一步培养学生的自主学习能力,提高学生观察、比较、概括以及合作学习的能力。
3、提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:
概括倒数的意义与求法。
教学难点:
理解“互为”、“倒数”的含义。
教学过程:
一、谈话引入
师:同学们,当美国人碰到好朋友的时候,会热情拥抱,那我们中国人一般会怎样做呢?
生:握手
师:现在谁愿意来前面和老师握握手?他就会成为老师最好的朋友。
(师生共同表演握手的动作)
师:握手是几个人的事情呢?
生:两个人
师:通过今天的相处,我们互相成了朋友。谁能告诉大家,你是怎样理解“互相成了朋友”这句话的?
生:“互相成了朋友”就是说我们是老师的朋友,老师也是我们的朋友。
师:同学们,前面我们学习了分数的乘法,今天老师给出一些乘法算式,比一比谁能最先发现这组算式的秘密。(拿出作业本帮助你)
二、引导探究,掌握方法。
1、举例观察,讨论。(2/5的'倒数)
师:怎样求一个数的倒数呢?
生:分子分母交换位置。
师生共同总结:一个分数的倒数就是把这个分数的分子分母交换位置。
2、小组讨论,探究求整数的倒数的方法。
师:2的倒数怎么求呢?
生:把2看成分母为1的分数,即2=2/1,所以2的倒数是1/2。
(师生共同总结:整数的倒数是用1做分子,用这个整数做分母。)
三、巩固练习,拓展外延。
1、出示“1/5,3/4,5/9,1,3/7,9/5,4/3,7/3”八个数,请学生移动数的位置,找出几组互为倒数的数。
2、剩下“1/5和1”,分别求出1/5的倒数和1的倒数。
3、1的倒数是几?(1的倒数是1。)你是怎样计算的?
(1)整数的倒数是用1做分子,用这个整数做分母。所以1的倒数为1。
(2)因为1×1=1,所以1的倒数为1。
4、0也是整数,0的倒数是几呢?
(1)出示0×()=1。谁上来填一填?(没人举手)
师:0乘任何数都不得1,这说明了什么?
生:0没有倒数。
(2)如果把0看成分母为1的分数,即为0/1,那么它的倒数应是1/0。
师:这样说可以吗?
生:不可以,因为0不以做分母。
5、真分数的倒数是假分数,假分数的倒数是真分数。那么带分数呢?
(先把带分数化成假分数,再求它的倒数。)
6、小数有倒数吗?
(1)把小数化成分数,再求它的倒数。
(2)举例说明:因0.25×4=1,所以说0.25和4互为倒数。
四、深化练习,巩固提高。
1、填空。
(1)乘积是()的两个数互为倒数。
(2)()的倒数是它本身,()没有倒数。
(3)27/100的倒数是(),25/16的倒数是()。
(4)0.7的倒数是()。
六、全课小结。
同学们,今天这节课你有什么收获?
板书设计
倒数
乘积是1的两个数互为倒数。
求一个数(0除外)的倒数,就是将分子、分母交换位置。
1的倒数是1;0没有倒数。
倒数的认识教学设计8
教学内容:
课本28页 倒数的认识
教学目标:
1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2.使学生经历倒数意义的概括过程,提高衙门观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3.通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
教学重点:
认识倒数并掌握求倒数的方法
教学难点:
小数与整数求倒数的方法
教学准备:
PPT课件,卡片
教学过程:
一、情境导入,引出问题
1、列举数学中两个数乘积是1的算式。
2、揭示课题:倒数的认识。
(设计意图)问题是数学的心脏,是学生探究的起点和动力,在谈话、游戏情境中引导学生发现问题,提出问题。
二、合作探究、解决问题
1.探究倒数的意义。
(1)观察刚才列举的例子,找出特点。
(2)出示倒数的意义:乘积是1的两个数互为倒数。
(3)小组讨论,什么是倒数?
学生独立思考后,组内交流。
全班汇报,教师根据学生的汇报点拨引导。
师生共同归纳倒数的意义:乘积是1的两个数叫做互为倒数。(教师板书)
(4)举例子:3/8×8/3=1,3/8和8/3互为倒数,3/8的倒数是8/3,8/3的倒数是3/8.
(5)口答练习:
2.探究求一个数(分数)的倒数的方法。
(1)小组合作,自学例1。
(2)小组派代表交流例1
(3)学生交流求一个分数倒数的方法。
师:互为倒数的两个数相等吗?怎么样表示它的结果?也可用—(破折号)表示。
(4)教师引导质疑:0有没有倒数?为什么?学生讨论释疑。
1×( )=1,所以1的倒数是1。而0×( )=1呢?
1的倒数是它本身,0没有倒数。
(5)引导学生概括求倒数的方法。
求一个数(0除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。
(6)练习:师生对口令,找倒数。
老师说一个数,学生快速抢答出它的倒数。
3、探究求整数、小数、带分数的倒数方法
师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?(整数、小数、带分数),那么怎么样求整数、小数、带分数的`倒数呢?选择一种,在小组内探究。
A:学生选择一种研究,教师巡视指导。
B:学生交流汇报,教师分别板书一例。
(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
三、巩固联系、拓展深化。
1.请你填一填。
2.我是小法官。
3.游戏:找朋友。
师:老师这里有一些卡片,上面写了一些数字,哪两个数是互为倒数关系,哪两个数就是好朋友。请你把这样的两张卡片找出来。
(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
四、总结反思
这节课你们有什么收获?还有什么疑问?
(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
板书设计: 倒数的认识
乘积是1的两个数互为倒数。
求一个数(0除外)倒数的方法:
把这个数分子、分母调换位置。
倒数的认识教学设计9
教学目标:
1、通过独立计算以及小组讨论等活动认识倒数,理解倒数的意义,能准确的说出,互为倒
数的两个数乘积为一,并且相乘的两个数分子、分母颠倒了位置
2、通过合作交流探讨出求一个数的倒数的方法,并能正确的求出一个数的倒数。
3、在探究交流的活动中,提高观察、抽象、概括的能力,发展数学思维。
教学重点:
认识倒数并能准确的求一个数的倒数。
教学难点:
小数求倒的方法
教具准备:
课件
教学流程(师生活动)设计
备课组成员
修改意见
一、创设情境,提出问题。
1、师:请同学们完成一下计算:
2、组织学生观察以上算式,说出你的'发现。
3、你还能再列举出其他类似的算式吗?
4、师:乘积是1的两个数之间存在着一种特殊的关系——互为倒数。
今天我们就一起来认识倒数,研究倒数。
二、探索交流,解决问题。
①倒数的意义
问题 1:请认真阅读课本第 28 页例 1 以上的部分,然后告诉老师
什么是倒数?互为倒数的两个数有什么特点?“互为”两个字又是什么
意思?先独立思考,然后小组讨论。
生汇报,师引导交流评价。
【随堂小测 1】第 29 页第 2 题的(1)( 2)题
②求一个数的倒数
问题 2:通过交流、探讨,你发现怎样才能正确的求一个数的倒数?
独立思考后,小组间讨论。
【随堂小测 2】第 28 页做一做
问题 3:特殊数 0 和 1 的倒数你会求吗?你有什么发现?
小结:1 的倒数是 1,0 没有倒数。
问题 4:0.45 的倒数你会求吗?说说你的思考过程。
独立思考后,小组间讨论。
【随堂小测 3】第 29 页第 2 题的(3)( 4)
思考:互为倒数的两个数有什么特点?如何求整数的倒数?如何求
分数的倒数?
三、巩固应用,内化提高 。
四、回顾整理,反思提升。
通过这节课的学习,你有什么收获?有什么感受
板书设计
倒数的认识教学设计10
教学内容:
新人教版六年级数学上册第28页的例1。
教学目标:
1、通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。
2、学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。
3、在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。
教学重点:
理解倒数的意义,学会求倒数的方法。
教学难点:
熟练正确的求小数、带分数的倒数,发现倒数的一些特征。
教学准备:
多媒体课件。
教学过程:
一、猜字游戏导入,揭示课题。
上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。
如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8 /3)。
师:谁还能说出这样的数?(课件出示)
象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)
二、出示学习目标:
1、理解倒数的意义。
2、掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。
三、自主探究新知
(一)探究讨论,理解倒数的意义。
1、(课件出示教材第24页例1的四个算式。)
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)
生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
2、出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。
3、你是怎样理解互为倒数的呢?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)能举例吗?
(二)深化理解。
1、乘积是1的两个数存在着怎样的倒数关系呢?
举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)
2、互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)
例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)
3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)
(三)运用概念。
1、讨论求一个数的倒数的方法。
出示例2:写出其中3/5 、7/2两个分数的倒数。学生试做讨论后,教师将过程板书如下:3/5的分子分母调换位置---5/3 7/2的分子分母调换位置---2/7
所以3/5的倒数是5/3,7/2的倒数是2/7 。(能不能写成3/5=5/3,为什么?)
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)
2、怎样求小数和带分数的倒数呢?(课件演示,学生观察。)
师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。
3、怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)
四、堂堂清作业
(一)填一填。(出示课件)
1、乘积是()的()个数()倒数。
2、a和b互为倒数,那a的倒数是(),b的倒数是()。
3、只有当假分数为()时,它与它的倒数相等;而()是没有倒数。
4、一个真分数的`倒数一定是()。
(二)判断题。(演示课件)
1、5/3是倒数。()
2、因为3/4×4/3=,所以4/3是倒数。()
3、真分数的倒数大于1,假分数的倒数小于1。()
4、因为1/4+3/4=1,所以1/4和/4互为倒数。()
(三)说一说。(课本第29页的第3题)
五、课堂小结:
今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有什么的问题吗?板书设计:
倒数的认识
乘积是1的两个数互为倒数。 0没有倒数,1的倒数是它本身。例2:写出其中2/5 、7/2两个分数的倒数。
2/5的分子分母调换位置---5/2 7/2的分子分母调换位置---2/7 6的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。
求小数的倒数的先把小数化成分数,再把分子和分母调换位置。
倒数的认识教学设计11
教学重点:认识倒数并掌握求倒数的方法
教学难点:小数与整数求倒数的方法
教学过程:
一、基本训练
口算:
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)
三、新课教学
1、乘积是1的两个数存在着怎样的倒数关系呢?
请看:,那么我们就说是的倒数,反过来(引导学生说)
是的倒数,也就是说和互为倒数。
和存在怎样的倒数关系呢?2和呢?
2.深化理解
提问:①什么是互为倒数?
怎样理解这句话?(举例说明)
(的倒数是,的倒数是,......不能说是倒数,要说它是谁的`倒数。)
②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,,......但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。
3.求一个数的倒数
教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。
①出示例题
例:写出、的倒数
学生试做讨论后,教师将过程板书如下:
所以的倒数是,的倒数是。
(能不能写成,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
②深化
你会求小数的倒数吗?(学生试做)
倒数的认识教学设计12
教学目标:
1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。
3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。
教学重点:
理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。
教学难点:掌握求倒数的方法。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)
1、口算:
(1)× × 6× ×40
(2)××3××80
2、今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识
二、新授
1、课件出示知识目标:
(1)什么叫倒数?怎样理解“互为”?
(2)怎样求一个数的倒数?
(3)0、1有倒数吗?是什么?
2、教学倒数的意义。
(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。
(2)学生汇报研究的结果:乘积是1的`两个数互为倒数。
(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)
(3)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)
3、教学求倒数的方法。
(1)写出的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。
(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
4、教学特例,深入理解
(1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)
(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)
5、同桌互说倒数,教师巡视。
三、当堂测评
1、练习六第2题:
2、辨析练习:练习六第3题“判断题”。
3、开放性训练。
3/5×( )=( )×4/7=( )×5=1/3×( )=1
四、课堂总结
你已经知道了关于“倒数”的哪些知识?
你联想到什么?
还想知道什么?
设计意图
倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。
教学后记
第十一、十二课时:整理和复习
倒数的认识教学设计13
一, 教学内容:国标版小学六年级数学上册第50页例7,练一练及第51页练习十第1-6题
二, 教学目标 :
知识目标:使学生经过探索理解倒数的意义,掌握求倒数的方法.
能力目标:能熟练地写出一个数的倒数.
情感目标:结合教学实际培养学生的抽象概括能力.
三, 教学重点:理解倒数的意义,掌握求倒数的方法.
四, 教学难点 :探索和理解倒数的意义
五, 教学过程 :
(一), 谈话
1.我们知道语文中有反义词,谁能举几个这样的例子呢
(学生举例)
2.导入 那么在数学上也有类似的这样的现象,今天我们就一起来探索一下这方面的知识.
(二),学习新知
1.学习倒数的意义
出示几组数据
3/8和8/3 5/4和4/5 2/3和3/2 10/7和7/10
你发现这几组数据有什么共同点吗
可能1:第一个 分数的 分子就是第二个分数的分母,第一个分数的分母就是第二个分数的 分子
可能2:两个分数的分子,分母相互调换了位置.
可能3:两个分数的乘积是1.
提问:谁能够根据刚才的回答给这几组数据起个名字呢 (注意可能1,倒过来的数字)(倒数)出示课题:倒数的认识
提问:那么怎样的两个数才互为倒数呢 我们一起来看看书上是咱们说的(指导看书).
思考:(1)什么是倒数 满足什么条件的两个数互为倒数
(2)你能找出互为倒数的两个数吗.请举例
*注意帮助学生理解"互为"的意义,以及叙述时语言要规范,如 2/3和3/2互为倒数.
2教学求一个数倒数的方法
出示例题:找出下列各数的倒数
2/3 7/4 1/5
小组讨论 指名板演
提问:1.你是怎么找出2/3的倒数的
生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3
生2:因为互为倒数的两个数的分子与分母正好调换位置.2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 .
2.你是怎么找出7/4的倒数的
……
提问: 我们怎样才能很快地找到一个数的倒数 为什么
(分数的分子和分母的位置互换)
抢答:5/9 6/7 8/5 的倒数各是多少
3质疑1:1 的是谁 0的倒数呢
生:1的倒数是1
师:能说明一下理由吗
生1:因为1与1的乘积还是1.
生2:因为1可以化成1/1,1/1分子与分母调换位置后还是1/1,即1,所以1的倒数是1.(板书:1的倒数是1)
师:0的倒数呢 (引导学生质疑)
生1:0的倒数是0.因为1的倒数是1,所以0的倒数是0.
生2:因为0与任何数相乘都得0,所以0的倒数是任何数.
生3:0的倒数是没有的因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数.
生4:0可以写成0/1,0/1的倒数是1/0.
生5:不对,1/0分母是0,没有意义,所以0是没有倒数的 (板书:0没有倒数)
4质疑2:5的倒数是几
5完善求一个数的倒数的`方法
(三), 巩固练习
(1)练一练
写出下面各数的倒数
7/12 1/3 9/4 8 13/5
(2)判断*
1.得数是1的两个数互为 倒数.()
2.互为倒数的两个数乘积一定是1.()
3. 1的倒数是1,所以0的倒数是0 .()
4.分数的倒数都大于1.()
(3)完成练习十第1-3题
1.完成在书上
2.举几个例子,说说你是怎么做的
3.集体核对
(4)完成练习十第4题
1 分成4组,分别完成第1.2.3.4组
2.同桌相互讨论,你发现了什么现象 (引导学生观察)
3.归纳:
真分数的倒数都是大于1的假分数
大于1的假分数的倒数都是真分数
一个分数的分数单位的倒数都是整数
整数(0除外)的倒数都是几分之一
(5) 完成练习十第6题*
1.理解题意
2.学生独立完成解题,师巡视.
3.质疑:解题思路都一样吗 两个2/5有什么区别
四,总结:今天我们学习了什么知识 你现在会求一个数的倒数了吗
六 板书设计
倒数的认识
乘积是1的两个数互为倒数
1的倒数是1 0没有倒数
倒数的认识教学设计14
教学目标:
1、是学生通过探究活动,认识倒数的意义,掌握找倒数方法。
2、培养学生观察、归纳、推理和概括的能力。
教学过程
一、创设活动情景,引入概念。
出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1.通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。
让学生读一读:倒数。
出示倒数的意义:乘积是1的两个数互为倒数。
二、 探究讨论,深入理解。
让学生说说对到数意义的理解。
提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)
判断下面的句子错在哪里?应该怎样叙述?
因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。
三、运用概念,探讨方法。
出示例2,找一找那两个数互为倒数?
汇报找的结果,并说一说怎样找到的?
1,看两个分数的乘积是不是1;
2,看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)
通过具体实例总结归纳找倒数的方法。
分子、分母交换位置
例:3/55∕3 3∕5的倒数是5∕3
(2)找倒数的倒数:先把整数看成分母是1的分数,在交换分子和分母的位置。
分子、分母交换位置
例:6=1∕6 6的倒数是1∕6.
四、出示特例,深入理解
看一看。例2中的那些数据没有找到倒数?(1,0)
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、关于1的.倒数。
因为11=1,根据乘积是1的两个数互为倒数,所以1的倒数是1. 交换分子、分母的位置
也可以这样推导:1= 1∕1=1,1的倒数是1.
2、关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
交换分子、分母的位置
也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。
五、巩固练习
1、完成做一做,先独立做,再全班交流。
2、练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、同桌进行互说倒数活动(练习六第2题)。
六、总结
今天学习了什么?
什么叫倒数?怎样找到一个数的倒数?
倒数的认识教学设计15
教学目标:
1、理解倒数的意义,掌握求一个数倒数的方法,能熟练地写出一个数的倒数。
2、引导同学自主合作交流学习,结合教学实际培养同学的笼统概括能力,激发同学学习的兴趣。
教学重点:
理解倒数的意义,掌握求倒数的方法。
教学难点 :
熟练写出一个数的倒数。
教具准备:
多媒体课件。
教学过程:
一、情境导入。
1、口算。
5/12x2/5 = 15/7 x7/5 = 11/8 x8/13 =
5/21x1/5 = 3/16 x7/3 = 8/21 x7/8 =
先独立考虑,再指名口算订正。
2、比一比,看谁算得又对又快:
2/3x3/2 = 2x1/2 = 11/8 x8/11 =
1/10x10= 7/9x9/7 = 1/7x7=
6/5x5/6 = 1/5x5 = 22/35x35/22 =
同学先独立口算,再口答订正。观察这些算式,说说自身有什么发现。
【设计意图:通过口算,观察,考虑,激发了同学的学习兴趣和强烈的探究欲望,使同学获得积极的情感经验。】
二、合作探索。
1、小组合作交流:
(1)和同桌说一说你的发现。
(2)请你自身举出3个像上面这样的乘法式子。
小组代表说说有什么发现。指名说说自身举出的例子。
教师:像这样的乘积是1的'两个数我们说它们的关系是互为倒数。
教师:关于倒数的知识,你已经有哪些认识?(同学说说自身的已有认识)
教师:书上又是怎样讲解倒数的呢?我们一起来读一读。
阅读教材,进一步理解。
教师:现在谁来说一说自身是怎样理解倒数的?
同学口答,教师小结:假如两个数的乘积是1,那么我们称其中一个数是另一个数的倒数,并称这两个数互为倒数。
出示:乘积是1的两个数互为倒数。读一读,强调概念中的关键词:“乘积”、“互为”。
【设计意图:关于倒数,局部同学已经有一定的知识准备,教学时采用小组合作交流、阅读课本的方法,让同学自主的体验学习知识的过程与获取知识的方法,提高同学的自主学习能力,同时,在合作交流的过程中,培养同学的独立考虑和合作探究意识。】
2、强化概念理解。
你认为下面这两种说法是否正确?
(1) 2/3 是倒数。
(2) 得数是1的两个数互为倒数。
同学先独立考虑,再口答,说明理由。
【设计意图:一些同学通过自身的阅读和交流获得的知识往往是比较肤浅的,为让同学深刻的理解,需要教师的点拨,这样较好的完善同学认识,更利于同学掌握所学的知识。】
文章地址:www.hzydhh.cn/html/323853.html